A Quantitative Electrophysiological Biomarker of Duplication 15q11.2-q13.1 Syndrome

نویسندگان

  • Joel Frohlich
  • Damla Senturk
  • Vidya Saravanapandian
  • Peyman Golshani
  • Lawrence T. Reiter
  • Raman Sankar
  • Ronald L. Thibert
  • Charlotte DiStefano
  • Scott Huberty
  • Edwin H. Cook
  • Shafali S. Jeste
چکیده

BACKGROUND Duplications of 15q11.2-q13.1 (Dup15q syndrome) are highly penetrant for autism spectrum disorder (ASD). A distinct electrophysiological (EEG) pattern characterized by excessive activity in the beta band has been noted in clinical reports. We asked whether EEG power in the beta band, as well as in other frequency bands, distinguished children with Dup15q syndrome from those with non-syndromic ASD and then examined the clinical correlates of this electrophysiological biomarker in Dup15q syndrome. METHODS In the first study, we recorded spontaneous EEG from children with Dup15q syndrome (n = 11), age-and-IQ-matched children with ASD (n = 10) and age-matched typically developing (TD) children (n = 9) and computed relative power in 6 frequency bands for 9 regions of interest (ROIs). Group comparisons were made using a repeated measures analysis of variance. In the second study, we recorded spontaneous EEG from a larger cohort of individuals with Dup15q syndrome (n = 27) across two sites and examined age, epilepsy, and duplication type as predictors of beta power using simple linear regressions. RESULTS In the first study, spontaneous beta1 (12-20 Hz) and beta2 (20-30 Hz) power were significantly higher in Dup15q syndrome compared with both comparison groups, while delta (1-4 Hz) was significantly lower than both comparison groups. Effect sizes in all three frequency bands were large (|d| > 1). In the second study, we found that beta2 power was significantly related to epilepsy diagnosis in Dup15q syndrome. CONCLUSIONS Here, we have identified an electrophysiological biomarker of Dup15q syndrome that may facilitate clinical stratification, treatment monitoring, and measurement of target engagement for future clinical trials. Future work will investigate the genetic and neural underpinnings of this electrophysiological signature as well as the functional consequences of excessive beta oscillations in Dup15q syndrome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rare Inherited 15q11.2-q13.1 Interstitial Duplication with Maternal Somatic Mosaicism, Renal Carcinoma, and Autism

Chromosome 15q11-q13.1 duplication is a common copy number variant associated with autism spectrum disorder (ASD). Most cases are de novo, maternal in origin and fully penetrant for ASD. Here, we describe a unique family with an interstitial 15q11.2-q13.1 maternal duplication and the presence of somatic mosaicism in the mother. She is typically functioning, but formal autism testing showed mild...

متن کامل

Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1

BACKGROUND Duplications of the chromosome 15q11-q13.1 region are associated with an estimated 1 to 3% of all autism cases, making this copy number variation (CNV) one of the most frequent chromosome abnormalities associated with autism spectrum disorder (ASD). Several genes located within the 15q11-q13.1 duplication region including ubiquitin protein ligase E3A (UBE3A), the gene disrupted in An...

متن کامل

Multisite Semiautomated Clinical Data Repository for Duplication 15q Syndrome: Study Protocol and Early Uses

BACKGROUND Chromosome 15q11.2-q13.1 duplication syndrome (Dup15q syndrome) is a rare disorder caused by duplications of chromosome 15q11.2-q13.1, resulting in a wide range of developmental disabilities in affected individuals. The Dup15q Alliance is an organization that provides family support and promotes research to improve the quality of life of patients living with Dup15q syndrome. Because ...

متن کامل

A twin sibling with Prader-Willi syndrome caused by type 2 microdeletion following assisted reproductive technology: A case report

Prader-Willi syndrome (PWS) is a neurobehavioral imprinting disorder, which arises due to an absence of paternally expressed genes within the 15q11.2-q13 region. This occurs via one of the three main genetic mechanisms, as follows: Deletion of the paternally inherited 15q11.2-q13 region, maternal uniparental disomy and imprinting defect. Recent studies have reported an association between impri...

متن کامل

Significant transcriptional changes in 15q duplication but not Angelman syndrome deletion stem cell-derived neurons

Background The inability to analyze gene expression in living neurons from Angelman (AS) and Duplication 15q (Dup15q) syndrome subjects has limited our understanding of these disorders at the molecular level. Method Here, we use dental pulp stem cells (DPSC) from AS deletion, 15q Duplication, and neurotypical control subjects for whole transcriptome analysis. We identified 20 genes unique to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016